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Abstract. We present a simple theory for structural transitions in displacive ferroelectrics of
the perovskite (AB@) type. As in earlier approaches, our model is based on the competition
between the elastic energy cost for the displacement of the B-ion from the centrosymmetric position,
and the energy gain due to ferroelectric ordering of the dipoles. We use an effective single-site
approximation which leads naturally to a first-order transition. This transition takes place at a
certain temperatur&, (L) as the temperature is varied, and at a certain 5j2&) as the size of

the system is varied. The transition temperafiig.) is suppressed as the sample size is reduced,
and vanishes for samples below a certain size. This is in accordance with recent observations
on nanocrystalline perovskites. For systems wittoatinuousbulk transition, which can also be
treated within our theory, we show that size effects are highly suppressed, a result that is also borne
out by experiments on order—disorder ferroelectrics with a continuous transition.

1. Introduction

Though the experimental study of finite size effects in ferroelectric materials has a long history
[1, 2], the development of advanced synthetic techniques has now made it possible to study
compounds in the form of phase-pure, ultrafine particles with a narrow size distribution. There
is also a strong motivation for studying size-limited, ferroelectric systems in view of their
current and potential applications as sensors, memory elements, nano-robotic and micro-
electromechanical devices [3].

A ferroelectric is termed ‘displacive’ when the elementary dipoles strictly vanish in the
paraelectric phase, and ‘order—disorder’ when they are non-vanishing but thermally average
outto zero in the paraelectric phase [4]. A similar distinction may also be made in terms of the
dynamics of the phase transition. However, it is now apparent that quite a few ferroelectrics fall
somewhere in between the two ideal limits of ‘displacive’ and ‘order—disorder’. Inrecentyears,
the displacive ferroelectric transitions in Pbgi@nd BaTiQ nanoparticles have been studied
in detail. The natures of the size effect observed in the two systems are essentially similar. A
decrease in the particle size causes monotonic reductions in (i) the transition tempErature
and (ii) the tetragonal distortion of the unit cell which characterizes the ferroelectric phase. So,
at a low enough particle size, the lattice tends to assume the high temperature, high symmetry,
cubic paraelectric structure.
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Uchinoet al [5] have found thaf. (in °C) falls with particle sizd. following the relation
B
T.(L) = Tc(c0) T—L) 1)
whereT,(c0) = 128(500) °C, B = 700(5885) °C nm andL,. = 110 (12.6) nm for BaTi@
(PbTiG).

In a recent study of nanocrystalline PbEi@sing dielectric, thermal and structural
measurements, [6], it was established that with decreasing particle size (i) there is a monotonic
decrease in th&,, (ii) the value of the peak dielectric constart,{,) decreases, (iii) the
ferroelectric transition becomes increasingly diffuse and (iv) the crystallographic unit cell
tends towards higher symmetry/¢ — 1). Qualitatively similar results were also obtained
for PbZrG;, a displaciveantiferroelectric[7]. A decrease irf, with size was also indirectly
suggested [8] from a study of the temperature dependence of the Raman soft mode frequency
[9], while a size dependence of the soft mode was observed later [10].

It is also instructive to compare finite size effects in displacive and order—disorder
ferroelectrics. In electrically insulated samples of sub-micrometrgR@, the depolarization
field appeared to prevent the stabilization of ferroelectric ordering below a critical size [11].
However, a later study of NaNQa typical order—disorder system, showed clearly that there
was no suppression @ down to 5 nm in samples suspended in either electrically insulated
or conducting media [12]. It is clear that size effects are much weaker for order—disorder
ferroelectrics. This feature is also predicted by our theory (section 5).

In recent years, there have been a few attempts to understand theoretically the nature of
size effects in ferroelectrics. Using the phenomenological Landau—Devonshire theory, Zhong
et al[13] have shown that the ferroelectfit should decrease with decreasing size, ultimately
leading to a size-driven phase transition from the ferroelectric to the paraelectric phase. Shih
et al [14] have considered the effect of incorporating the depolarization energy in the Landau
free energy density.

In this paper, we restrict ourselves mainly to the description of quasi-free ferroelectric
nanoparticles. The system is assumed to consist of loosely aggregated, unclamped particles
which are not electrically isolated. Under such circumstances, we can ignore the effects of both
external strain and depolarization. This approximates the experimental situation considered
by Chattopadhyagt al [6]. Specifically, we have selected PbEi@s the model system, but
the results should apply to other displacive-type systems with first-order transitions as well.

PbTiO; is a classical displacive ferroelectric with a tetragonal perovskite structure
(a = 0.3899 nm, = 0.4153 nm at room temperature). In its paraelectric phase, Rd7a®
a cubic perovskite structure & ¢ = 0.396 nm just abové,) consisting of TiQ octahedra
arranged in a simple cubic pattern, with the Pb ions occupying the spaces in between. It
undergoes a first-order transition to a tetragonal ferroelectric ph&e-af768 K. At room
temperature, the Ti and O ions are displaced with respect to the Pb ions, parallel to the polar
axis with displacementgr; = 0.018 nm andi, = 0.047 nm [15].

The paper is organized as follows. In section 2 we present our model and discuss the
qualitative physics of the phase transition. Section 3 gives the details of the calculation, and
our results are presented in section 4. In the model adopted in the present paper, the transition
takes place as a result of competition between an ordering tendency of dipoles in adjacent cells
and the elastic energy cost associated with the displacement of the atoms. Our main results are
the following. We offer a simple physical explanation for the first-order transition in displacive
systems driven by temperature and system size. We calculate the strain in the unit cell and make
comparison with experiments. While the temperature dependence of the strain does not agree
very well with experiments, the size dependence is in excellent agreement. We show that for
ferroelectrics with a second-order bulk transition, size effects are highly suppressed (section 5).
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We present the phase diagram for both kinds of ferroelectric in the temperature-size plane.
The paper ends with a brief discussion of the advantages and limitations of our theory, and
prospects for future work (section 6).

2. The model and its physical basis

A dipole moment is created in each unit cell (AB®y the displacement of the B-ion from the
centre of the unit cell to an off-centre position. This is accompanied by a distortion of the cubic
unit cell to a tetragonal one with sides< a x c¢. The order parameter, = ¢/a — 1, obtained

from powder x-ray diffraction studies [6], is a measure of the strain or distortion of the unit cell.

Clearly, there is an energy cost at each site associated with the displacemegt [17]
of the ‘central’ B-ion. In spite of this cost, the system may find it profitable to undergo a
distortion accompanied by an off-centre shift of the B-ion if there is a sufficiently large negative
contribution from the interaction energy of dipoles when they are aligned. We describe this
energy phenomenologically by an interactieti&; £; between nearest neighbours and refer to
this term as the ‘Ising’ term (see belowy). is positive for ferroelectrics, whereas a negative
J will describe antiferroelectrics. In the present work we focus mainly on ferroelectrics (see
however section 6).

The effective Hamiltonian for the problem is thus the sum of an elastic part and an Ising
part. Inthe single-site approximation employed by us, the long-range dipole—dipole interaction
is taken care of by an effective field. The form of the elastic part may be deduced from simple
symmetry considerations. The cost of a displacenjeof the central atom at thah unit
cell and an associated straip(= c¢/a — 1) of the unit cell can be written as a power-series
expansion ir§; ando;, at each site. Only even powers&fare allowed in the expansion since
the energy cannot depend on which way the atom moves. There is no such restriction for the
straino, which is a scalar. We thus arrive at the Hamiltonian

1 1
HE o)=Y <§kzs,-2 + gkag +aof - bcnéf) —J ) &g 2
iJ

L

There is no term proportional t@; alone since, when all; = 0, the system should be in
equilibrium witho; = 0.

An additional consideration has gone into the truncation of the power series. Itis expected
on symmetry grounds that the thermally averaged valuig, of the strain will be an even
function of the thermally averaged displacemégit and, for small distortionsio) ~ (£2).

This is borne out extremely well from experimental data on PRTfi@ure 1). From the data
we find the empirical relation

(161%)

2 3)
whereA = 3.24 for PbTiQ. The quadratic relation holds good for other oxides as well [18],
with different values ofA.

We may therefore conclude thigt ando are of the same order of smallness. The power
series expansion in (2) thus retains all terms u@to?) or O(£4).

Starting with the Hamiltonian (2), we can easily integrate out the straindietd arrive
at an effective free energy in terms of the displacements,

1 1
F&) = Sho) &2+ 7ha) & 1) & @)
i i (ij)

wherei, = ky andiy = k4 — b%/4a.

(o)~ A
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Figure 1. The tetragonal straim; (= ¢/a — 1) of the PbTiQ unit cell plotted as a function af/a

(the displacement| of the homopolar atom in units of lattice spacing) [18]. The filled circles
correspond to measurements [16] at different temperatures Belamd the line is the best fit to
equation (3).

To obtain a physical picture of the temperature driven transition in bulk samples, we
introduce variables; andd; corresponding to the direction and magnitude of the displacement,

§ =dia; (5)
wherew; (= +1) is an Ising variable. With this change of variables, the ferroelectric part of the
Hamiltonian (see equation (10)) becomes a compressible Ising term [19], since the coupling
(~Jd?) is proportional to the displacement. At a temperatiitethe Ising part cannot be
ordered (and hence the system cannot be a ferroelectric) if the coupling is legs (varset
kg, the Boltzmann constant, equal to unity in this paper). This means that the system can be
a ferroelectriconly if d? is greater than-7T/J. Even wheni? > T/J, whether it actually is
a ferroelectric or a paraelectric depends on energetic considerations. This explains why we
expect a first-order transition driven by temperature.

To treat this quantitatively, we may perform a partial trace overtlegree of freedom
and evaluate a free energy functional of the distortigredone, given by

e '@ =Tr, e Hed, (6)

The global minimum ofF (d) determines the thermodynamic phase. We shall see in the
following section that this procedure automatically leads to a first-order transition.

The size induced transition can also be easily understood within this picture. For a system
with N = (L + 1)3 sites, the elastic energyN and the Ising energy is Nz(L) wherez(L)
is the average coordination number of the cubic lattice of linearIsi@ee hereafter measure
L in units of lattice spacing) given by

1 3 2
(L) = T+ 1)3[6(L 1)% +30(L — 1)%+48(L — 1) + 24]. (7)

For very largeL, z — 6 and the system, let us say, is ferroelectfic<£ 7.). If we reduceL,
this reduceg (L), and the Ising part decreases as a result. This makes the ferroelectric phase
unstable at small size and the system becomes a paraelectric below a critical size.

In particular, at zero temperature, when there are no thermal fluctuatioissthe same
at all sites, and the free energy is simply

f@) =3[z = Jz(D)]d? + rad’ ®)
which describes aecond-ordetransition driven by size when
A2 = Jz(L.) 9)

at a certain critical sizé ..
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3. Calculations

In this section we present a mean-field theory for our model. We first perform an integration
over the strain variable as explained in the previous section. The effective Hamiltonian (4)
expressed in terms af ande; is

1 1
F(d, ) = EAZZdi2+ ZMZdi“— 1Y didjoia;. (10)
i i (i)
Recall thaw; is the magnitude of the displacement of the central ion intthenit cell andy;
is its sign. We now perform a trace over ilae&ariables at the mean-field level, to obtain

1 1 1
F(d) = E)‘ZZdiz + ZMZdﬁ +5J Zmimjdidj
{ i )

Jd; > m;d;
—TY ‘In2cosh( —=L—"" ), 11
inzeos( =5 @
The thermal average; = («;) is determined by the self-consistency equation
Jd; > . m;d;
m; = tanh(%). (12)

In this paper, we resort to the approximatifn= d, i.e., we assume that the central atom
displaces by theame amount in all the unit cellsTherefore, the free energy per unit cell
f(d;) = F(d;)/N is given by (see equation (11))

fd)=e(d)+1(d) (13)
where we have separated the elastic part
e(d) = 3hod? + $had? (14)

and the Ising part
1 1 Jd?> m;
— 2 . — T &
I(d)=Jd v gj) mim; N Ei TIn 2COSh< T ) (15)

For the bulk case, equation (12) gives a uniform solutigr= m. We thus have
szd2>

1(d) = %szzdz —TIn2 cosh( (16)
wherez is the coordination number of the cubic lattice.

The schematic plots @f(d), I(d) and f (d) are shown in figure 2. It can be seen that the
elastic partis an increasing function of the displacement with a minimdme=ad, whereas the
Ising part is constant, equal toT In 2, ford < d. = /T/Jz and decreases (i.e. increases in
magnitude, being negative always) for largeindeed, fod < d., m = 0 (see equation (12))
and thereford (d) = —T In2. For larged, 1(d) ~ —d?, so that the quartic term ia(d)
dominates for largel, resulting in a stable free energy function, as shown in figure 2. As
a result, the free energy develops a second minimudy,avhich is found by solving the
equationdf/ad = 0. It is this two-minimum structure of the free energy that leads to a
first-order transition between the ferroelectidc=£ dp) and paraelectricd = 0) phases.

Minimizing the free energy in equation (13) with respect/fave obtain

Aod + Aad® — JzmPd = 0 (17)
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Figure 2. Schematic plots of the different contributions to the free energy (equation (4)). The
elastic part (dashed line) has a minimum at the origin. The second minimum is produced by the
Ising part (short dashes) which is constant up to a certain displacement and begins to decrease after
that. This results in the full free energy with two minima (continuous line).

corresponding to the two minima, onedat 0 and the other at

2_3
do= | 1FM" 22 (18)
Ag

At the first-order transition, the two minima coexist, i.€(0) = f(dp), or

242
%kzdg + %ms‘ + ;szzczg —T,In cosh( ! Z”;C do) —0. (19)

We need three independent conditions to fix the three parameters of our thebsyand
J. The last two equations supply two of these conditions, in which we insert the experimental
values ofT, anddy. The third condition is the equatidn = Jz(L.), derived at the end of the
last section.

From experiments on PbTiQwe havedy = 0.299 A and7, ~ 768 K. We find that
L. ~ 10 (lattice units) leads to good agreement with experimental data for the size dependence
of the strain [6]. We note that Zhored al [13] also obtainL. ~ 10. Using these values in the
three equations above, we obtdin= 4.345909x 10* K A2, 1, = 2.3718x 10° K A—2 and
Aa = 2.6529%x 10° K A4,

Not surprisingly, since/zd3/T. ~ 30.27, we obtainm =~ 1 for all the sites (see
equation (12)). This, in fact, also turns out to be the case for a finite lattice, as we find by
numerically solving equation (12) explicitly for a finite lattice witpenboundary conditions.

The discussion in this section so far assumesihas positive. When, is negative, it
is easy to see that= 0 is no longer a minimum, but a maximum, since the second derivative
atd = 0 is simply equal to the spring constant’(d = 0) = A,. As a result, one no longer
has a first-order transition, but a continuous one. All the equations in this section except
equation (19) are valid in this case, which is discussed in detail in section 5.

4. Results

Figure 3 shows our result for the strain as a function of temperature for the bulk case (solid
line), while the experimental data [18] are shown by solid circles. The lack of quantitative
agreement is ascribed to the fact that in our mean-field theory, the ferroelectric is completely
saturated, i.em ~ 1l atallT < T..
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Figure 3. The strain plotted as a function of temperature for bulk PBTiOhe filled circles

are the experimental points and the solid line is from the theory. The dashed line is obtained
by assuming a weak linear temperature dependencgfoand the dotted line by assuming a
temperature dependeny (see figure 4).
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Figure 4. The ratiod4(T)/14(T,) plotted as a function of temperature. This dependence leads to
the dotted line shown in figure 3.

We can correct for this disagreement in two ways. The first possibility is to assume a weak
temperature dependence for, of the formAT + B. ForB =5.45J,A =55x 1074 J K1,
we obtainis = 1.23J A—2 andJ = 1.65 x 10° K A—2 (T is in kelvin), which leads to the
dashed line shown in figure 3. We find that while this makes the order parameter temperature
dependent, it also makes.tindependent and therefore size independent, though the size-
driven transition still remains.

Alternatively, we can assume a temperature dependence fahich can be assigned
by requiring that the order parameter agree with experiment. This turns our to be a rather
strong temperature dependencexgwhich we show in figure 4. For simplicity, however, our
subsequentresults are obtained by assuming thatbatidi 4 are independent of temperature.

We have shown in figer5 a plot of the strain calculated as a function of system size at a
temperature of 300 K, along with the corresponding experimental data [6]. In this graph, we
have normalized the calculated strain by demanding that it agrees with the experimental value
for the bulk system at this temperature. The agreement with experiment is clearly quite good.

Figure 6 shows the size—temperature phase diagram, obtained by calculating the strain.
The phase boundary for systems with> 0 (solid line) is a line of first-order transitions for
all T > 0, but the size-driven transition @& = 0 is continuous, as noted above. It can be
seen from the phase diagram that for systems with- O our theory predicts a suppression
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Figure 5. The strain in the tetragonal phas¢q — 1) as a function of reduced system size at 300 K.
The solid line shows the strain calculated from our theory (see the text), while the filled circles are
experimental points [6].
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Figure 6. The phase diagram of ferroelectrics in the temperature—size plane obtained within
our theory. We have plotted the reduced temperalu(é)/ 7. (co) against the reduced particle

size. The solid line is for systems witf» > 0 and is a first-order line separating the tetragonal
ferroelectric phase from the cubic paraelectric phase. Note that there is an appreciable suppression
of 7. as the system size is reduced, a@hds zero below a critical size. The dotted line is for

the systems withh, < 0 and is a line of second-order transitions separating the low-temperature
ferroelectric phase from the high-temperature paraelectric phase. The transition temFériature

this case remains practically equal to its bulk value down to very small sizes. In particular, there
is no size-induced transition and the system remains in the ordered phaselpgldar all sizes.

Theiz < 0 case usually corresponds to order—disorder ferroelectrics.

of T, as the system size is reduced. This is in agreement with experimental results and other
theoretical studies on displacive systems. To our knowledge, all typical displacive systems are
found to exhibit first-order transitiona{ > 0) at7,. This correlation was not thought to be
theoretically necessary prior to the present work.

5. Ferroelectrics with X, < 0

For systems with., < 0, the local potential experienced by the central B-ion has a double
well structure, i.e., there is a local maximundat 0 and two minima a#l = +d.

In this case, it is easy to see that size effects are highly suppressed. Firstly, we note that

the Ising term can never lead to a minimumdat= O for any finite temperature. Therefore,
an increase in temperature can destroy the ferroelectric order via a continuous transition.
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The distortion continues to have the value given by equation (18, kat(«r) vanishes when
Jz(L)d3/T = 1. The last condition can be met by changiiigr by changing system size.

For the bulk systemz(L) = 6), this condition is satisfied f&f = 7,. We can therefore write
z(L)/6 ~ T/ T,, whereL is the size at which there is a size-driven transition at temper@ture

Note that when expressed in terms of the reduced transition temperatarg,(L)/ T.(c0),

the above equation (which describes the boundary between the ferroelectric and paraelectric
phases) is independent of our model parameterg,/ H. is about 0.9 (say), then we have to

go to systems as small &s~ 10 (see equation (7)) to observe size effects.

Most systems of the order—disorder type, e.g., triglycine sulphate and sodium nitrite,
exhibit second-ordeng < 0) paraelectric transitions. Typically, the lattice spacings in these
systems are-4 A, so we have to obtain samples of sizd0 A to have observable size
effects, even at so high a temperature & 1. At lower temperatures the corresponding
critical sizes are even smaller. In particular, oK 0.5 T'¢, we do not expect any size-driven
transition, since (L) must be larger than 3. Such a suppression of size effects in order—disorder
ferroelectrics has actually been observed in experiments [12].

We also show the phase diagram for ferroelectrics with< 0 in figure 6, and it is
instructive to study the difference between the two kinds of ferroeleatsie<(0 anda, > 0).

We attribute the suppression of size effects in the case of ferroelectrics.with 0 to the
absence of a structural transition accompanying the ferroelectric transition. Indeed, at any
temperature, one has to go to much smaller samples to meet the requidestients/ T = 1

(which is the transition condition for, < 0 systems) than the co-existence condition given

by equation (19) (which is the transition condition for > 0 systems).

6. Discussion

An important qualitative merit of our theory is that it can be easily extended to include
antiferroelectric oxides, simply by makingnegative. The ordered phase will have a nonzero
value for an antiferroelectric order parameter such as sublattice polarizgtidime molecular

field at any site, due to the nearest neighbours, will be opposite in sign to the order parameter
at that site, so that the product of the molecular field andll have the same sign as for the
ferroelectric case. The theory as worked out above in terms of displacements will go through
without any further change, and the results will be identical to that for ferroelectrics, with
J replaced bylJ|. Recent experimental studies of size-driven transitions in antiferroelectric
materials [7] report results very similar to those in ferroelectrics, confirming our expectation.

We can explain the form of the empirical equation (1) for size-driven transitions very
easily in our theory. For size-driven transitions, we obtain from equation (19), upon
replacingiz, A4 and J by their values determined form bulk data, an equation of the form
IncosiAz(L)/T.) = Ayz(L)/T. — Az, for some A1, A, (measured in K) aniis, a
dimensionless number. It is clear that this equation will have a solution of the form (1)
for large L sincez(L) is given by equation (7). The numbets, A, and A3 can be related to
the parameterg,(co), B and L. appearing in equation (1). The actual numbers appearing in
equation (1) will of course depend on material parameters.

Our theory has only three fitting parameters, whereas the phenomenological Landau
theories [13, 14] have about twice as many. This is clearly so because our theory is based
on a microscopic model which identifies the different contributions to the system free energy
as being due to the elastic and ferroelectric parts. As a result, we are also able to describe
the structural transition in displacive systems in addition to the ferroelectric transition, to
which itis related. Earlier, we have pointed out that all known displacive ferroelectrics exhibit
first-order transitions, and a qualitative merit of our theory is that the first-order transition
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appears in a very natural way for displacive ferroelectrics, with minimal assumptions about
the form of the elastic part of the Hamiltonian. With the lowest-order nonlinear elastic term,
i.e., the fourth-order term, we are able to describe the first-order transition. This is an essential
difference from earlier approaches based on a Landau expansion of the free energy.

We have also shown that our theory can describe size-driven transitions in ferroelectrics
with continuous as well as discontinuous transitions. For systems with continuous transitions
in the bulk (such as certain order—disorder ferroelectrics),ig~ 0, our model correctly
predicts a suppression of size effects relative to ferroelectrics with discontinuous transitions.
Our simple estimate for the critical size at which size effects become importantin these systems
is in agreement with data on NaN@L2]. The current approach is superior to the Landau
theory for size-driven transitions [13] since size effects in order—disorder systems can also be
addressed in it.

Although our model gives a useful physical picture for both temperature- and size-driven
transitions, it is rather too simple to provide perfect quantitative agreement. We have made
several simplifying assumptions, the first being that the displacement has the same magnitude
throughout the sample. This is not necessarily true, especially for small systems where the
displacement at the surface could be different from that in the bulk. This, and the subsequent
neglect of thermal fluctuations, turn out to be rather drastic approximations, The strongly
first-order character of the transition (i.e. the very weak, almost nonexistent, temperature
dependence of the order parameter) is probably an artifact of our mean-field approximation.
We have also performed calculations based on the Bethe—Peierls approximation [20], which
takes into account short-range correlations between dipoles. However, this does not lead to a
more realistic temperature dependence for the order parameter [21].

An interesting question, which cannot be answered within the framework of our theory, is
whether the transition remains first order beyond mean-field theory. Further, since our theory is
an effective single-site theory, it cannot capture the phenomenon of the lattice mode softening
that is observed in these systems [22].

We do not consider the effect of depolarization field in our theory. The depolarization
field, under certain circumstances, can lead to better quantitative agreement with experiment
[14]. However, in the experimental situation that we have described [6], the effect of the
depolarization field should be negligible as explained in section 1. We have not explicitly
considered the role of long-range interactions between dipoles, since this will simply lead to
a reparametrization af in the type of theory presented in this paper.

In conclusion, we have presented a simple unified mean-field theory for ferroelectrics with
continuous as well as discontinuous structural transitions, which captures the physics of both
temperature-induced transitions in the bulk and size-induced transitions in nanoparticles. The
size effects are understood in a simple way as being a result of the smaller coordination number
near the surface of the particle. Very generally, we have shown that ferroelectrics with continu-
ous bulk transition have suppressed size effects, while ferroelectrics with first-order bulk transi-
tion have appreciable size effects. We emphasize that, in our theory, it is the sigfn.ef, the
order of the transition) that is important, and not the displacive or order—disorder nature of the
ferroelectric. The further identification @b > 0 (A, < 0) systems with displacive (or order—
disorder) ferroelectrics can only be justified empirically. Future work will centre around incor-
porating the effect of thermal fluctuations and obtaining closer agreement with experiments.

Acknowledgments

It is a pleasure to thank Mustansir Barma whose suggestions and critical remarks have
gone a long way in helping us understand the intricacies of the problem. We also



Structural transitions in displacive ferroelectrics 2469

thank Deepak Dhar for being the perfect bouncing board. We have also benefitted from
discussions with Soma Chattopadhyay, Chandan Dasgupta, Rahul Pandit, Arun Paramekanti,
TV Ramakrishnan, Madan Rao and Nandini Trivedi. SB acknowledges the hospitality of TIFR.

References

[1] Anliker M, Brugge H R and Kanzig W 1954Helv. Phys. Acta27 99
[2] Kanzig W 1955Phys. Rew8549
[3] Francomle M H 1993Physics of Thin Films: Mechanic and Dielectric Propertied M H Francombe and
J L Vossen (San Diego: Academic) pp 225-300
[4] Lines M E and Glas A M 1977Principles and Applications of Ferroelectrics and Related Mater{@sford:
Clarendon)
[5] Uchino K, Sadanaga E and Hirose T 198%m. Ceram. So@.2 1555
[6] Chattopadhyay S, Ayyub P, Palké R and Multani M 1995°hys. RevB 5213177
[7] Chattopadhyay S, Ayyub P, Palkar V R, Gurjar A V, WankaM and Multan M S 1997J. Phys.: Condens.
Matter 9 8135
[8] Ishikawa K, Yoshikawa K and Okada N 1983hys. RevB 37 5852 The trends in the experiments of
Chattopadhyayet al [6] agree with those in the earlier experiments described above. In this paper, for
concreteness, we shall refer to the experimental results of Chattopaethgiay
[9] Burns G and ScoB A 1970Phys. Rev. Let25167
Burns G and ScoB A 1973Phys. RevB 7 3088
[10] Zhong W L, Jiang B, Zhang P L, Ma J M, Cheng H M, g7 H and Li L X 1993J. Phys.: Condens. Matté&r
2619
[11] Jacard C, Knzig W and Peter M 1953elv. Phys. Act&6 521
[12] Marquardt P and Gleiter H 1982hys. Rev. Letd8 1423
[13] Zhong W L, Wang Y B, Zhag P L and Qu B D 199#hys. RevB 50698
[14] Shih WY, Shih W-H and Aksal A 1994 Phys. RevB 5015575
[15] Shirane G, Pepinsky R and Fra®C 1956Acta Crystallogr9 131
[16] Gavrilyachenko V G, Spinko R I, MartyneakM A and Fesen E G 1970Sov. Phys.—Solid Stal® 1203
[17] We have assumed above that the distortion of the unit cell takes place along the same axis all through the
sample, i.e., all the unit cells have theilxis along, say, the direction. This is reasonable, since there
would be enormous elastic costs involved in having adjacent unit cells distended along different directions.
Accordingly, the displacement can only be along tt&is, but it can be either up or down.
[18] We calculatedy from the experimental polarization data using the equatig) = P(T)(do(T.)/ P(T.)); at
T,, bothdp and P are known from experiments, art{7') is known over a wide range of temperatures, so
we can obtainly(T). The P(T) data have been taken from reference [16]
[19] Domb C 1956]. Chem. Phy25783
Bergman D J and HalperiB | 1976Phys. RevB 132145
Mattis D C and Schut T D 1963Phys. Rev129175
[20] Huang K 1963Statistical MechanicgNew York: Wiley)
[21] Sheshadri K and Lahiri R unpublished
[22] Cochran W 196@\dv. Phys9 387



