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Abstract. We present a simple theory for structural transitions in displacive ferroelectrics of
the perovskite (ABO3) type. As in earlier approaches, our model is based on the competition
between the elastic energy cost for the displacement of the B-ion from the centrosymmetric position,
and the energy gain due to ferroelectric ordering of the dipoles. We use an effective single-site
approximation which leads naturally to a first-order transition. This transition takes place at a
certain temperatureTc(L) as the temperature is varied, and at a certain sizeLc(T ) as the size of
the system is varied. The transition temperatureTc(L) is suppressed as the sample size is reduced,
and vanishes for samples below a certain size. This is in accordance with recent observations
on nanocrystalline perovskites. For systems with acontinuousbulk transition, which can also be
treated within our theory, we show that size effects are highly suppressed, a result that is also borne
out by experiments on order–disorder ferroelectrics with a continuous transition.

1. Introduction

Though the experimental study of finite size effects in ferroelectric materials has a long history
[1, 2], the development of advanced synthetic techniques has now made it possible to study
compounds in the form of phase-pure, ultrafine particles with a narrow size distribution. There
is also a strong motivation for studying size-limited, ferroelectric systems in view of their
current and potential applications as sensors, memory elements, nano-robotic and micro-
electromechanical devices [3].

A ferroelectric is termed ‘displacive’ when the elementary dipoles strictly vanish in the
paraelectric phase, and ‘order–disorder’ when they are non-vanishing but thermally average
out to zero in the paraelectric phase [4]. A similar distinction may also be made in terms of the
dynamics of the phase transition. However, it is now apparent that quite a few ferroelectrics fall
somewhere in between the two ideal limits of ‘displacive’ and ‘order–disorder’. In recent years,
the displacive ferroelectric transitions in PbTiO3 and BaTiO3 nanoparticles have been studied
in detail. The natures of the size effect observed in the two systems are essentially similar. A
decrease in the particle size causes monotonic reductions in (i) the transition temperatureTc
and (ii) the tetragonal distortion of the unit cell which characterizes the ferroelectric phase. So,
at a low enough particle size, the lattice tends to assume the high temperature, high symmetry,
cubic paraelectric structure.
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Uchinoet al [5] have found thatTc (in ◦C) falls with particle sizeL following the relation

Tc(L) = Tc(∞)− B

(L− Lc) (1)

whereTc(∞) = 128(500) ◦C,B = 700(588.5) ◦C nm andLc = 110 (12.6) nm for BaTiO3
(PbTiO3).

In a recent study of nanocrystalline PbTiO3 using dielectric, thermal and structural
measurements, [6], it was established that with decreasing particle size (i) there is a monotonic
decrease in theTc, (ii) the value of the peak dielectric constant (εmax) decreases, (iii) the
ferroelectric transition becomes increasingly diffuse and (iv) the crystallographic unit cell
tends towards higher symmetry (c/a → 1). Qualitatively similar results were also obtained
for PbZrO3, a displaciveantiferroelectric[7]. A decrease inTc with size was also indirectly
suggested [8] from a study of the temperature dependence of the Raman soft mode frequency
[9], while a size dependence of the soft mode was observed later [10].

It is also instructive to compare finite size effects in displacive and order–disorder
ferroelectrics. In electrically insulated samples of sub-micrometre KH2PO4, the depolarization
field appeared to prevent the stabilization of ferroelectric ordering below a critical size [11].
However, a later study of NaNO2, a typical order–disorder system, showed clearly that there
was no suppression ofTc down to 5 nm in samples suspended in either electrically insulated
or conducting media [12]. It is clear that size effects are much weaker for order–disorder
ferroelectrics. This feature is also predicted by our theory (section 5).

In recent years, there have been a few attempts to understand theoretically the nature of
size effects in ferroelectrics. Using the phenomenological Landau–Devonshire theory, Zhong
et al [13] have shown that the ferroelectricTc should decrease with decreasing size, ultimately
leading to a size-driven phase transition from the ferroelectric to the paraelectric phase. Shih
et al [14] have considered the effect of incorporating the depolarization energy in the Landau
free energy density.

In this paper, we restrict ourselves mainly to the description of quasi-free ferroelectric
nanoparticles. The system is assumed to consist of loosely aggregated, unclamped particles
which are not electrically isolated. Under such circumstances, we can ignore the effects of both
external strain and depolarization. This approximates the experimental situation considered
by Chattopadhyayet al [6]. Specifically, we have selected PbTiO3 as the model system, but
the results should apply to other displacive-type systems with first-order transitions as well.

PbTiO3 is a classical displacive ferroelectric with a tetragonal perovskite structure
(a = 0.3899 nm,c = 0.4153 nm at room temperature). In its paraelectric phase, PbTiO3 has
a cubic perovskite structure (a = c = 0.396 nm just aboveTc) consisting of TiO6 octahedra
arranged in a simple cubic pattern, with the Pb ions occupying the spaces in between. It
undergoes a first-order transition to a tetragonal ferroelectric phase atTc = 768 K. At room
temperature, the Ti and O ions are displaced with respect to the Pb ions, parallel to the polar
axis with displacementsdT i = 0.018 nm anddO = 0.047 nm [15].

The paper is organized as follows. In section 2 we present our model and discuss the
qualitative physics of the phase transition. Section 3 gives the details of the calculation, and
our results are presented in section 4. In the model adopted in the present paper, the transition
takes place as a result of competition between an ordering tendency of dipoles in adjacent cells
and the elastic energy cost associated with the displacement of the atoms. Our main results are
the following. We offer a simple physical explanation for the first-order transition in displacive
systems driven by temperature and system size. We calculate the strain in the unit cell and make
comparison with experiments. While the temperature dependence of the strain does not agree
very well with experiments, the size dependence is in excellent agreement. We show that for
ferroelectrics with a second-order bulk transition, size effects are highly suppressed (section 5).
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We present the phase diagram for both kinds of ferroelectric in the temperature–size plane.
The paper ends with a brief discussion of the advantages and limitations of our theory, and
prospects for future work (section 6).

2. The model and its physical basis

A dipole moment is created in each unit cell (ABO3) by the displacement of the B-ion from the
centre of the unit cell to an off-centre position. This is accompanied by a distortion of the cubic
unit cell to a tetragonal one with sidesa× a× c. The order parameter,σ = c/a− 1, obtained
from powder x-ray diffraction studies [6], is a measure of the strain or distortion of the unit cell.

Clearly, there is an energy cost at each site associated with the displacement [17]ξi
of the ‘central’ B-ion. In spite of this cost, the system may find it profitable to undergo a
distortion accompanied by an off-centre shift of the B-ion if there is a sufficiently large negative
contribution from the interaction energy of dipoles when they are aligned. We describe this
energy phenomenologically by an interaction−Jξiξj between nearest neighbours and refer to
this term as the ‘Ising’ term (see below).J is positive for ferroelectrics, whereas a negative
J will describe antiferroelectrics. In the present work we focus mainly on ferroelectrics (see
however section 6).

The effective Hamiltonian for the problem is thus the sum of an elastic part and an Ising
part. In the single-site approximation employed by us, the long-range dipole–dipole interaction
is taken care of by an effective field. The form of the elastic part may be deduced from simple
symmetry considerations. The cost of a displacementξi of the central atom at theith unit
cell and an associated strainσi (≡ c/a − 1) of the unit cell can be written as a power-series
expansion inξi andσi , at each site. Only even powers ofξi are allowed in the expansion since
the energy cannot depend on which way the atom moves. There is no such restriction for the
strainσ , which is a scalar. We thus arrive at the Hamiltonian

H(ξ, σ ) =
∑
i

(
1

2
k2ξ

2
i +

1

4
k4ξ

4
i + aσ 2

i − bσiξ2
i

)
− J

∑
i,j

ξiξj . (2)

There is no term proportional toσi alone since, when allξi = 0, the system should be in
equilibrium withσi = 0.

An additional consideration has gone into the truncation of the power series. It is expected
on symmetry grounds that the thermally averaged value,〈σ 〉, of the strain will be an even
function of the thermally averaged displacement〈ξ〉, and, for small distortions,〈σ 〉 ∼ 〈ξ2〉.
This is borne out extremely well from experimental data on PbTiO3 (figure 1). From the data
we find the empirical relation

〈σ 〉 ' A 〈|ξ |
2〉

a2
(3)

whereA = 3.24 for PbTiO3. The quadratic relation holds good for other oxides as well [18],
with different values ofA.

We may therefore conclude thatξ2 andσ are of the same order of smallness. The power
series expansion in (2) thus retains all terms up toO(σ 2) orO(ξ4).

Starting with the Hamiltonian (2), we can easily integrate out the strain fieldσ , to arrive
at an effective free energy in terms of the displacements,

F(ξi) = 1

2
λ2

∑
i

ξ2
i +

1

4
λ4

∑
i

ξ4
i − J

∑
〈ij〉

ξiξj (4)

whereλ2 = k2 andλ4 = k4 − b2/4a.
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Figure 1. The tetragonal strain,σ(= c/a − 1) of the PbTiO3 unit cell plotted as a function ofd/a
(the displacement|ξ | of the homopolar atom in units of lattice spacing) [18]. The filled circles
correspond to measurements [16] at different temperatures belowTc, and the line is the best fit to
equation (3).

To obtain a physical picture of the temperature driven transition in bulk samples, we
introduce variablesαi anddi corresponding to the direction and magnitude of the displacement,

ξi = diαi (5)

whereαi (= ±1) is an Ising variable. With this change of variables, the ferroelectric part of the
Hamiltonian (see equation (10)) becomes a compressible Ising term [19], since the coupling
(∼Jd2) is proportional to the displacement. At a temperatureT , the Ising part cannot be
ordered (and hence the system cannot be a ferroelectric) if the coupling is less thanT (we set
kB , the Boltzmann constant, equal to unity in this paper). This means that the system can be
a ferroelectriconly if d2 is greater than∼T/J . Even whend2 > T/J , whether it actually is
a ferroelectric or a paraelectric depends on energetic considerations. This explains why we
expect a first-order transition driven by temperature.

To treat this quantitatively, we may perform a partial trace over theα degree of freedom
and evaluate a free energy functional of the distortionsdi alone, given by

e−F(d) = Trαi e−H(α,d). (6)

The global minimum ofF(d) determines the thermodynamic phase. We shall see in the
following section that this procedure automatically leads to a first-order transition.

The size induced transition can also be easily understood within this picture. For a system
with N = (L + 1)3 sites, the elastic energy∼N and the Ising energy is∼Nz(L) wherez(L)
is the average coordination number of the cubic lattice of linear sizeL (we hereafter measure
L in units of lattice spacinga) given by

z(L) = 1

(L + 1)3
[6(L− 1)3 + 30(L− 1)2 + 48(L− 1) + 24]. (7)

For very largeL, z→ 6 and the system, let us say, is ferroelectric (T < Tc). If we reduceL,
this reducesz(L), and the Ising part decreases as a result. This makes the ferroelectric phase
unstable at small size and the system becomes a paraelectric below a critical size.

In particular, at zero temperature, when there are no thermal fluctuations,αi is the same
at all sites, and the free energy is simply

f (d) = 1
2[λ2 − Jz(L)]d2 + 1

4λ4d
4 (8)

which describes asecond-ordertransition driven by size when

λ2 = Jz(Lc) (9)

at a certain critical sizeLc.
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3. Calculations

In this section we present a mean-field theory for our model. We first perform an integration
over the strain variable as explained in the previous section. The effective Hamiltonian (4)
expressed in terms ofdi andαi is

F(d, α) = 1

2
λ2

∑
i

d2
i +

1

4
λ4

∑
i

d4
i − J

∑
〈ij〉

didjαiαj . (10)

Recall thatdi is the magnitude of the displacement of the central ion in theith unit cell andαi
is its sign. We now perform a trace over theα variables at the mean-field level, to obtain

F(di) = 1

2
λ2

∑
i

d2
i +

1

4
λ4

∑
i

d4
i +

1

2
J
∑
〈ij〉

mimjdidj

−T
∑
i

ln 2 cosh

(
Jdi

∑
j mjdj

T

)
. (11)

The thermal averagemi = 〈αi〉 is determined by the self-consistency equation

mi = tanh

(
Jdi

∑
j mjdj

T

)
. (12)

In this paper, we resort to the approximationdi = d, i.e., we assume that the central atom
displaces by thesame amount in all the unit cells. Therefore, the free energy per unit cell
f (di) = F(di)/N is given by (see equation (11))

f (d) = e(d) + I (d) (13)

where we have separated the elastic part

e(d) = 1
2λ2d

2 + 1
4λ4d

4 (14)

and the Ising part

I (d) = Jd2 1

N

∑
〈ij〉

mimj − 1

N

∑
i

T ln 2 cosh

(
Jd2∑

j mj

T

)
. (15)

For the bulk case, equation (12) gives a uniform solutionmi = m. We thus have

I (d) = 1

2
Jzm2d2 − T ln 2 cosh

(
Jzmd2

T

)
(16)

wherez is the coordination number of the cubic lattice.
The schematic plots ofe(d), I (d) andf (d) are shown in figure 2. It can be seen that the

elastic part is an increasing function of the displacement with a minimum atd = 0, whereas the
Ising part is constant, equal to−T ln 2, for d < dc =

√
T/Jz and decreases (i.e. increases in

magnitude, being negative always) for largerd. Indeed, ford < dc,m = 0 (see equation (12))
and thereforeI (d) = −T ln 2. For larged, I (d) ∼ −d2, so that the quartic term ine(d)
dominates for larged, resulting in a stable free energy function, as shown in figure 2. As
a result, the free energy develops a second minimum atd0, which is found by solving the
equation∂f/∂d = 0. It is this two-minimum structure of the free energy that leads to a
first-order transition between the ferroelectric (d = d0) and paraelectric (d = 0) phases.

Minimizing the free energy in equation (13) with respect tod, we obtain

λ2d + λ4d
3− Jzm2d = 0 (17)



2464 K Sheshadri et al

Figure 2. Schematic plots of the different contributions to the free energy (equation (4)). The
elastic part (dashed line) has a minimum at the origin. The second minimum is produced by the
Ising part (short dashes) which is constant up to a certain displacement and begins to decrease after
that. This results in the full free energy with two minima (continuous line).

corresponding to the two minima, one atd = 0 and the other at

d0 =
√
Jzm2 − λ2

λ4
. (18)

At the first-order transition, the two minima coexist, i.e.,f (0) = f (d0), or

1

2
λ2d

2
0 +

1

4
λ4d

4
0 +

1

2
Jzm2d2

0 − Tc ln cosh

(
Jzm2d2

0

Tc

)
= 0. (19)

We need three independent conditions to fix the three parameters of our theoryλ2, λ4 and
J . The last two equations supply two of these conditions, in which we insert the experimental
values ofTc andd0. The third condition is the equationλ2 = Jz(Lc), derived at the end of the
last section.

From experiments on PbTiO3, we haved0 = 0.299 Å andTc ' 768 K. We find that
Lc ' 10 (lattice units) leads to good agreement with experimental data for the size dependence
of the strain [6]. We note that Zhonget al [13] also obtainLc ' 10. Using these values in the
three equations above, we obtainJ = 4.345 909× 104 K Å−2, λ2 = 2.3718× 105 K Å−2 and
λ4 = 2.6529× 105 K Å−4.

Not surprisingly, sinceJzd2
0/Tc ' 30.27, we obtainm ' 1 for all the sites (see

equation (12)). This, in fact, also turns out to be the case for a finite lattice, as we find by
numerically solving equation (12) explicitly for a finite lattice withopenboundary conditions.

The discussion in this section so far assumes thatλ2 is positive. Whenλ2 is negative, it
is easy to see thatd = 0 is no longer a minimum, but a maximum, since the second derivative
at d = 0 is simply equal to the spring constant:f ′′(d = 0) = λ2. As a result, one no longer
has a first-order transition, but a continuous one. All the equations in this section except
equation (19) are valid in this case, which is discussed in detail in section 5.

4. Results

Figure 3 shows our result for the strain as a function of temperature for the bulk case (solid
line), while the experimental data [18] are shown by solid circles. The lack of quantitative
agreement is ascribed to the fact that in our mean-field theory, the ferroelectric is completely
saturated, i.e.,m ' 1 at allT < Tc.
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Figure 3. The strain plotted as a function of temperature for bulk PbTiO3. The filled circles
are the experimental points and the solid line is from the theory. The dashed line is obtained
by assuming a weak linear temperature dependence forλ2, and the dotted line by assuming a
temperature dependentλ4 (see figure 4).

Figure 4. The ratioλ4(T )/λ4(Tc) plotted as a function of temperature. This dependence leads to
the dotted line shown in figure 3.

We can correct for this disagreement in two ways. The first possibility is to assume a weak
temperature dependence forλ2, of the formAT +B. ForB = 5.45J ,A = 5.5×10−4 J K−1,
we obtainλ4 = 1.23 J Å−2 andJ = 1.65× 105 K Å−2 (T is in kelvin), which leads to the
dashed line shown in figure 3. We find that while this makes the order parameter temperature
dependent, it also makes itJ independent and therefore size independent, though the size-
driven transition still remains.

Alternatively, we can assume a temperature dependence forλ4 which can be assigned
by requiring that the order parameter agree with experiment. This turns our to be a rather
strong temperature dependence forλ4 which we show in figure 4. For simplicity, however, our
subsequent results are obtained by assuming that bothλ2 andλ4 are independent of temperature.

We have shown in figure 5 a plot of the strain calculated as a function of system size at a
temperature of 300 K, along with the corresponding experimental data [6]. In this graph, we
have normalized the calculated strain by demanding that it agrees with the experimental value
for the bulk system at this temperature. The agreement with experiment is clearly quite good.

Figure 6 shows the size–temperature phase diagram, obtained by calculating the strain.
The phase boundary for systems withλ2 > 0 (solid line) is a line of first-order transitions for
all T > 0, but the size-driven transition atT = 0 is continuous, as noted above. It can be
seen from the phase diagram that for systems withλ2 > 0 our theory predicts a suppression



2466 K Sheshadri et al

Figure 5. The strain in the tetragonal phase (c/a−1) as a function of reduced system size at 300 K.
The solid line shows the strain calculated from our theory (see the text), while the filled circles are
experimental points [6].

Figure 6. The phase diagram of ferroelectrics in the temperature–size plane obtained within
our theory. We have plotted the reduced temperatureTc(L)/Tc(∞) against the reduced particle
size. The solid line is for systems withλ2 > 0 and is a first-order line separating the tetragonal
ferroelectric phase from the cubic paraelectric phase. Note that there is an appreciable suppression
of Tc as the system size is reduced, andTc is zero below a critical size. The dotted line is for
the systems withλ2 < 0 and is a line of second-order transitions separating the low-temperature
ferroelectric phase from the high-temperature paraelectric phase. The transition temperatureTc in
this case remains practically equal to its bulk value down to very small sizes. In particular, there
is no size-induced transition and the system remains in the ordered phase belowTc/2 for all sizes.
Theλ2 < 0 case usually corresponds to order–disorder ferroelectrics.

of Tc as the system size is reduced. This is in agreement with experimental results and other
theoretical studies on displacive systems. To our knowledge, all typical displacive systems are
found to exhibit first-order transitions (λ2 > 0) atTc. This correlation was not thought to be
theoretically necessary prior to the present work.

5. Ferroelectrics withλ2 < 0

For systems withλ2 < 0, the local potential experienced by the central B-ion has a double
well structure, i.e., there is a local maximum atd = 0 and two minima atd = ±d0.

In this case, it is easy to see that size effects are highly suppressed. Firstly, we note that
the Ising term can never lead to a minimum atd = 0 for any finite temperature. Therefore,
an increase in temperature can destroy the ferroelectric order via a continuous transition.
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The distortion continues to have the value given by equation (18), butm = 〈α〉 vanishes when
Jz(L)d2

0/T = 1. The last condition can be met by changingT or by changing system size.
For the bulk system (z(L) = 6), this condition is satisfied forT = Tc. We can therefore write
z(L)/6' T/Tc, whereL is the size at which there is a size-driven transition at temperatureT .
Note that when expressed in terms of the reduced transition temperature,t = Tc(L)/Tc(∞),
the above equation (which describes the boundary between the ferroelectric and paraelectric
phases) is independent of our model parameters. IfT/Tc is about 0.9 (say), then we have to
go to systems as small asL ∼ 10 (see equation (7)) to observe size effects.

Most systems of the order–disorder type, e.g., triglycine sulphate and sodium nitrite,
exhibit second-order (λ2 < 0) paraelectric transitions. Typically, the lattice spacings in these
systems are∼4 Å, so we have to obtain samples of size∼40 Å to have observable size
effects, even at so high a temperature as 0.9 Tc. At lower temperatures the corresponding
critical sizes are even smaller. In particular, forT 6 0.5 T c, we do not expect any size-driven
transition, sincez(L)must be larger than 3. Such a suppression of size effects in order–disorder
ferroelectrics has actually been observed in experiments [12].

We also show the phase diagram for ferroelectrics withλ2 < 0 in figure 6, and it is
instructive to study the difference between the two kinds of ferroelectric (λ2 < 0 andλ2 > 0).
We attribute the suppression of size effects in the case of ferroelectrics withλ2 < 0 to the
absence of a structural transition accompanying the ferroelectric transition. Indeed, at any
temperature, one has to go to much smaller samples to meet the requirementJz(L)d2

0/T = 1
(which is the transition condition forλ2 < 0 systems) than the co-existence condition given
by equation (19) (which is the transition condition forλ2 > 0 systems).

6. Discussion

An important qualitative merit of our theory is that it can be easily extended to include
antiferroelectric oxides, simply by makingJ negative. The ordered phase will have a nonzero
value for an antiferroelectric order parameter such as sublattice polarizationαS . The molecular
field at any sitei, due to the nearest neighbours, will be opposite in sign to the order parameter
at that site, so that the product of the molecular field andJ will have the same sign as for the
ferroelectric case. The theory as worked out above in terms of displacements will go through
without any further change, and the results will be identical to that for ferroelectrics, with
J replaced by|J |. Recent experimental studies of size-driven transitions in antiferroelectric
materials [7] report results very similar to those in ferroelectrics, confirming our expectation.

We can explain the form of the empirical equation (1) for size-driven transitions very
easily in our theory. For size-driven transitions, we obtain from equation (19), upon
replacingλ2, λ4 andJ by their values determined form bulk data, an equation of the form
ln cosh(A1z(L)/Tc) = A2z(L)/Tc − A3, for someA1, A2 (measured in K) andA3, a
dimensionless number. It is clear that this equation will have a solution of the form (1)
for largeL sincez(L) is given by equation (7). The numbersA1, A2 andA3 can be related to
the parametersTc(∞), B andLc appearing in equation (1). The actual numbers appearing in
equation (1) will of course depend on material parameters.

Our theory has only three fitting parameters, whereas the phenomenological Landau
theories [13, 14] have about twice as many. This is clearly so because our theory is based
on a microscopic model which identifies the different contributions to the system free energy
as being due to the elastic and ferroelectric parts. As a result, we are also able to describe
the structural transition in displacive systems in addition to the ferroelectric transition, to
which it is related. Earlier, we have pointed out that all known displacive ferroelectrics exhibit
first-order transitions, and a qualitative merit of our theory is that the first-order transition
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appears in a very natural way for displacive ferroelectrics, with minimal assumptions about
the form of the elastic part of the Hamiltonian. With the lowest-order nonlinear elastic term,
i.e., the fourth-order term, we are able to describe the first-order transition. This is an essential
difference from earlier approaches based on a Landau expansion of the free energy.

We have also shown that our theory can describe size-driven transitions in ferroelectrics
with continuous as well as discontinuous transitions. For systems with continuous transitions
in the bulk (such as certain order–disorder ferroelectrics), i.e.,λ2 < 0, our model correctly
predicts a suppression of size effects relative to ferroelectrics with discontinuous transitions.
Our simple estimate for the critical size at which size effects become important in these systems
is in agreement with data on NaNO2 [12]. The current approach is superior to the Landau
theory for size-driven transitions [13] since size effects in order–disorder systems can also be
addressed in it.

Although our model gives a useful physical picture for both temperature- and size-driven
transitions, it is rather too simple to provide perfect quantitative agreement. We have made
several simplifying assumptions, the first being that the displacement has the same magnitude
throughout the sample. This is not necessarily true, especially for small systems where the
displacement at the surface could be different from that in the bulk. This, and the subsequent
neglect of thermal fluctuations, turn out to be rather drastic approximations, The strongly
first-order character of the transition (i.e. the very weak, almost nonexistent, temperature
dependence of the order parameter) is probably an artifact of our mean-field approximation.
We have also performed calculations based on the Bethe–Peierls approximation [20], which
takes into account short-range correlations between dipoles. However, this does not lead to a
more realistic temperature dependence for the order parameter [21].

An interesting question, which cannot be answered within the framework of our theory, is
whether the transition remains first order beyond mean-field theory. Further, since our theory is
an effective single-site theory, it cannot capture the phenomenon of the lattice mode softening
that is observed in these systems [22].

We do not consider the effect of depolarization field in our theory. The depolarization
field, under certain circumstances, can lead to better quantitative agreement with experiment
[14]. However, in the experimental situation that we have described [6], the effect of the
depolarization field should be negligible as explained in section 1. We have not explicitly
considered the role of long-range interactions between dipoles, since this will simply lead to
a reparametrization ofJ in the type of theory presented in this paper.

In conclusion, we have presented a simple unified mean-field theory for ferroelectrics with
continuous as well as discontinuous structural transitions, which captures the physics of both
temperature-induced transitions in the bulk and size-induced transitions in nanoparticles. The
size effects are understood in a simple way as being a result of the smaller coordination number
near the surface of the particle. Very generally, we have shown that ferroelectrics with continu-
ous bulk transition have suppressed size effects, while ferroelectrics with first-order bulk transi-
tion have appreciable size effects. We emphasize that, in our theory, it is the sign ofλ2 (i.e., the
order of the transition) that is important, and not the displacive or order–disorder nature of the
ferroelectric. The further identification ofλ2 > 0 (λ2 < 0) systems with displacive (or order–
disorder) ferroelectrics can only be justified empirically. Future work will centre around incor-
porating the effect of thermal fluctuations and obtaining closer agreement with experiments.
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